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By W. E. Moeckel

SUMMARY

SPEEDS

Large downstream movements of transition observed when the leading
edge of a hollow cylinder or a flat plate is slightly blunted are ex-
plained in terms of the reduction in”Reynolds number at the outer edge
of the boundary layer due to the detached shock wave. The magnitude of
this reduction is computed for cones and wedges for Mach numbers to 20. “
Concurrent changes in “outer-edge”Mach number and temperature are
found to be in the direction that would increase the stability of the
laminar boundary layer.

The hypothesis is made that transition Reynolds number is substan-
tially unchanged when a sharp leading edge or tip is blunted. This
hypothesis leads to the conclusion that the downstream movement of tran-
sition is inversely proportional to the ratio of surface Re~olds number
with blunted tip or leading edge to surface Reynolds number with sharp
tip or leading edge. This conclusion i~ in good agreement with the
hollow-cylinderresult at Mach 3.1.

Application of this hypothesis to other Mach numbers yields the
result that blunting the tip of slender cones or the leading edge of
thin wedges should produce downstream movements of transition by factors
ranging from 2 at Mach 3.0 to 30 at Mach 15. The significance of this
result is discussed with regard to the possible reduction in over-all
heat-transfer rate and friction drag for aticraft flying at high super-
sonic speeds.

Mach number profiles nesr the surfaces of blunted cones and wedges
are computed for an assumed shape of the detached shock wave at flight
Mach numbers to 20. The dissipation and stability of these profiles are
discussed, and a method is described for estimattig the smount of blunt-
ing required to produce the maximum possible downstream movement of
transition.
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2 NACA TN 3653

INTRODUCTION

In an investigation of the boundary layer on a hollow cylinder
alined with the stream direction, Brinich and Diaconis discovered that
the transition point moved downstream when the leading edge was slightly
blunted (ref. 1). Similar results were obtained with a flat-plate wing
in reference 2. A more extensive investigation of the effects of
leading-edge geometry on transition (ref. 3) confirmed previous results
and led directly to the explanation contained herein of the effect of
blunting on transition.

When a cone or wedge is blunted slightly (sketch 1), the flow is
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Sketch 1

changed in several ways, each of which could have a noticeable effect on
the transition location. A favorable static-pressure @adient is estab-
lished near the vertex which could tend to stabilize the laminar layer.
Downstream of the shoulder, “however,the static-pressuregadient is
adverse (for mcderate supersonic speeds) because of the overexpansion
around the shoulder and subsequent recompression to the value corre-
sponding to the unblunted cone or wedge. The effect of static-pressure
gadient on transition is thmefore inconclusive.
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In addition to the static-pressuregradient along the surface’,the
blunting produces a stagnation-pressuregradient normal to the surface.
This gradient results from the variation in stagnation-pressureloss as
the detached shock decays from the normal-shock strength at the vertex
to the stren@h corresponding to the unblunted body at some distance
from the vertex. For inviscid flow, the stagnation pressure along each
streamline remains constant downstream of the shock; hence, this ~adi-
ent normal to the surface would persist along the entire length of the
body. In the constant-static-pressureregion a few bluntness diameters

$“ downstream of the vertex, the stagnation-pressuregradient results in a
shear layer whose thickness depends on the size of the blunted portion

t of the body.

The fact that the entropy gradient produced by,stron@y curved
shock waves might have appreciable effect on the development of the
boundary layer is’pointed out in references 4 and 5. Previously, the
author of the present report had evaluated the shear profiles produced
by detached shock waves near the surface of blunted flat plates. An
explanation of the observed movement of transition in terms of these
shear profiles was therefore sought.

The interaction of the boundsry layer with the shear profile pro-
duced by a detached shock wave is fundamentally a very difficult analyt-
ical problem; however, the condition of most interest is one for which
the interaction of the two profiles is not important. Thus, if the
shear profile produced by blunting is much thicker than the boundary
layer, the rate of shear of the former is negligible.compared with that
of the latter. The bound~ layer then develops in a region of negli-
gible shear and in a layer whose Mach number is almost constant and is
less than that produced by a sharp cone or wedge.

Of particular significance is the fact that the region of reduced
Mach number near the surface is also a region of reduced Reynolds number.l
Until the bound- layer engulfs this region, its stability and transi-
tion characteristics,as well as its friction and heat-transfer charac-
teristics, should be those associated with the reduced Reynolds number.
This reduction in Reynolds nunibernear the surface of blunted bodies
explains the downstream movement of transition observed in references 1
to 3, and is the basis used in this report for comparing the boundwy-
layer characteristics of blunted and unblunted bodies.

%Phis reduction in surface Reynolds number due to blunting and its
. effect on laminar heating have

ref. 6 for hypersonic speeds.
the thickness and axial extent
effect on transition location.

recently been independentlycalculated in
No attempt was made, however, to define
of the low Reynolds number layer or its

.
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ANALYSXS

The Mach nwiber in the inviscid shear layer produced near the sur-
face of blunted cones and wedges increases continuously from the surface
value to the value that would exist at the surface of the corresponding
unblunted bodies. The Reynolds number per unit length at the outer edge
of the boundary layer (“outer-edge”Reynolds number) therefore remains “
less than the free-stream (or unblunted) value until the boundsxy layer
absorbs the entire shock-produced shear layer. If the transition point .
is determined primarily by the Reynolds number at the outer edge of the %

boundary layer, a progressive downstream movement of transition would :

therefore be expected as the leading edge or tip bluntness is ~adually
increased. The maximum downstream mwement would be expected when the
blunting is sufficiently great so that the outer-edge Reynolds number
is close to the inviscid surface value for the entire laminar run. In
the following sections, the maximum reduction in outer-edge Reynolds
number is calculated, and the blunted area required to produce this
maxhnun reduction over the entire laminar layer is estimated.

.

Reduction in Surface Reynolds Number Due to Blunttig

At a station sufficiently far downstream of the vertex, where the
surface static pressure for a blunted body is close to that of the un-
blunted body, the Reynolds number near the surface can be written as

R% %Un ~=

[

%% H—— —
q= %.% h tn Ml pn

(1)

where subscripts n and 1 refer to inviscid surface values for the
blunted and unblunted bodies, respectively. (All symbols are deffned
in appendix A.) These inviscid surface values will be assumed, as
usual, to represent the outer-edge conditions that determine boundsry-
layer development.

The use of Sutherland’s viscosity equation yields

(2)

Dividing the numerator and
to and converting to Mach

denominate by the ambient static temperature .
number functions yield

%
~=D%~
R~

(3)
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where

and

1.++2 %~
r-l

1+~ ~

+G

— . ..— —-—.

.5

(4]

(5)

The inviscid surface Mach number for the blunted body ~ is de-

termined by the ratio pl/Pn, where PI is the static pressure at the

surface of the unblunted body and Pn is the stagnation pressure down-
stream of a normal shock at the free-stream Mach nunber ~. The in-

viscid surface Mach numbers are shown in figure 1 as a function of ~

for several cone and wedge angles. Since the total pressure Pn is

less than the total pressure at the surface for un%lunted bodies, the
surface Mach number Mn for the blunted bodies is less than the sur-

face Mach number for the unblunted bodies Ml. The difference between

~ and Ml increases as flight Mach number increases.

The Reynolds numb= ratio of equation (3) is plotted iD figure 2
for the same cone and wedge angles as those in figure 1. This ratio
decreases rapidly as flight Mach number increases. If the transition
Reynolds number is unchamged when the leading edge or tip is blunted,
and if the blunting is adequate to cover the laminar boundary layer with
a sufficiently thick layer of low Reynolds number ati~ then it should be
possible to increase the length of laminar run by a factor inversely
proportional to the Reynolds number ratio of figure 2. For slendm
cones and wedges, the possible increases in laminar run range from fac-
tors of the order of 2.0 at ~= 3.0 to 10 at Mo= 8.0 and 30 at

MO= 15.0. The significance of such large increases in laminar run for
reducing the heat-transfer rate and friction drag for very high-speed
aircraft is apparent.

Evidence that increases in laminar run of the magnitude tidicated
by figure 2 are actually attainable is presented in references 1 to 3.

. . — -. —..- -—_—_._ ..-. _ -.—- . . .. . . . —.. . ..— —— ——. —.
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In reference 3, for example, the transition point at ~ = 3.1 was

moved downstream by a factor of 2 (from 5 to 10 in. at a Reynolds

number of 3.56KL&/in.) when the leading-edge thickness was increased
from 0.0008 to 0.008 inch. ‘I!hisexperimentalmovement of transition
compares very favorably with the value 2.17 predicted on the basis of
the Reynolds nuniberreduction shown h figure 2(b).

In reference 2, downstream movements by factors ranging from 2.3
to 3.6 were observed for a blunted flat plate at various angles of
attack at ~= 4.04. The movement predicted by figure 2(b) for this

Mach number is 3.57. For swept wings, little or no downstream movement
was observed in reference 2. This is in ageement with the expected
weakening of the leading-edge shock due to sweepback. Whether down-
stream movements of the order of magnitude predicted by figure 2 are
attainable at higher Mach number or for other body shapes remains to
be established by further experiments.

Estimation of Bluntness Required to Obtain

Maximum Movement of Transition

In order to determine the bluntness area required to cover the
enttie laminar boundary layer with a low Reynolds number layer of neg-
ligible gradient, it is convenient to define a thickness of this layer
which limits the Mach number to values near the inviscid surface value.
A suitable thickness is the distance from the surface to the streamline
that passes through the sonic point of the detached shock wave (point
where the Mach number ~ust behind the shock is unity). 1% the vertex
to the sonic point the stagnation pressure downstream of the shock does
not vary greatly; consequently, the Mach number should remain near the
inviscid surface value in the layer thus defined.

An expression for the thickness will be derived under the assump-
tion that the shear profile produced by the detached shock does not
diffuse or dissipate, that is, the profile remains unchanged until it
is engulfed by the boundary layer. The rate of dissipation of the
shock-prcduced shear layer is discussed in appendix B, and tends to in-
crease the bluntness area required to produce a given thickness of the
low Mach number layer.

With dissipation neglected, the thickness of the low Mach number
region can be estimated by means of’the detached-shock-wavetheory of
reference 7. In this theory, the detached shock wave is assumed to
have a hyperbolic form independent of the shape of the body that pro-
duces it. This form has been found to a&ee well with expertientalre-
sults for a large range of body shapes in the moderate supersonicMach

— _—--—
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number range (ref. 8), hut
increases. The portion of

7

becomes more questionable as the Mach number
the shock from the vertex to the sonic-point,

however, can he satisfactorily represented by the assumed hyperbola for-
all Mach numbers. This form of the shock wave should, therefore, yield
a satisfactory estimate of the thickness of the low Mach number layer as
well as the shock location, to the extent that the other assumptions of
the theory (constant specific heat, inviscid flow, etc.) are valid.

In order to estimate this thickness, the Mach number in the layer
is assumed to be constant at a value corresponding to the mass centroid
of the layer. This Mach number, denoted by ~, is determined from the
ratio pl/Pcj where P1 is the static pressure on the surface of the un-

blunted cone or wedge and PC is the total pressure downstream of the

shock on the centroid streamline. (A simple and satisfactory esthate
of Pc can be obtained by using the arithmetic mean of the stagnation

pressures at the sonic point and at the vertex.) The continuity equa-
tion for the layer shown in sketch 2 can be written

(6)

.

where

stream
S. If
at the

Sketch 2

~ is tbe area of the low Mach number layer and As is the free-

area of the stream tube between the axis and the shock sonic point
the bluntness of the body is defined as its cross-sectional area
sonic point ASB (sketch 2), the ratio of the area of the low

Mach number layer to the blunted area becomes

“% % Po (A*/A)%
——

~“%’BpC-
(7)

,
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1
‘1 -Bcos~

is the mean inclination of the sonic

(8)

line defined in reference 7.

The area of the lowl!ach number layer defined by equation (7) is
shown in figure 3. This area is seen to increase rapidly with increas-
ing Mach numbers for the blunted flat plate (f3w= O) and for the blunt-

nosed cylinder (f3c= 0). However, for wedge half-angles greater than

5° and cone half-angles greater than 10°, the area does not vary greatly
with Mach number.

With the thickness of the low Mach nuniberand low Reynolds number
layer thus defined, the blunting required to provide a low external-
stream Reynolds number for the entire laminar boundsry layer to the ex-
pected or hoped-for transition point can be estimated. This is done by
calculating the laminar boundary-layer thickness at the expected tran-
sition Reynolds number, which is based on conditions in the low Mach
number layer near the surface. By equating this thickness to the tliick-
ness of the low Reynolds number layer, the required values of the blunt-
ness sxea can be calculated.

Thus, for blunted wedges the requtied ordinate at the body sonic
point is

(9)

w~le for blunted cones (with 5tr<< rl)>

[1
l/2

2rl,tr%r

‘m= &ZGJ-
(10)

where ~/~ is given in figure 3, and rl,tr $s the radius of the

blunted cone at the expected transition point. Equations (9) and (10)
shm that the amount of blunting required to cover the laminar boundary .

layer with a low Reynolds nuniberlayer is not large. For the wedge
(eq. (9)), the ordinate of the body at the sonic point need be only of
the order of magnitude of the boundary-layer thickness at the expected
transition point; for the cone (eq. (10)), the required radius of the

———
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body at the sonic point is of the order of the gemnetric mean of the
body radius and the boundary-layer thickness at the expected transition
point.

The required bluntness is considerably reduced if the displacement
effect is considered, since the low Reynolds number layer is moved away
from the surface by an amount equal to the displacement thickness of the
boundary layer (ref. 3). The required values of y= should therefore

be calculated tith (5 - b~ti in place of 5tr in equations (9) and

(10). Expressions for 5 and 5* for constant surface temperature
~

were obtained from equations (18) and (22) of reference 9, based on the
flat-plate theory of reference 10. The value of 5 was assumed to cor-

respond to & = 0.99. At the transition point, these expressions-can

be combined to@~(for y= 1.40)

(I-1)

where Ltr is the distance along the surface to the transition point

and C is the proporti~ity constant in the linesr viscosity-
teEjEjture variation. For cones, this expression is divided by -@.
In terms of (5 - b*)tr> th~ntness requtied to cover the laminar

boundary layer with a low Reynolds number lay=

for wedges and

/

becomes

(12)

(13)

L J

for cones.

With equation (12), the calculated bluntness areas a@?ee as closely
as could be expected with the experimental values that produced the
maximum downstream movement of transition in the experiments of refer-
ence 3. This maxhum downstream movement was found to take place..fora
leading-edge thickness of about 0.008-=ch7w%~~h is about two-thirds

..—..-—

.—— — ——
of t~calculated value. l’ur%h~r-”-hdreasesin leading-edge thickness
had no appreciable effect on transition location. Since the thickness

.—. ..——... —.. . -.. — - - - .-——-- -—— -- -- -—- — —... —.—— . --..—
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of the low Reynolds number layer has been rather arbitrarily defined,
the values of ym calculated from equations (12) and (13) can be re-
garded only as rough esthnates of the blunting required to produce

J

maxhmn downstream movement of transition. These values should, how-
ever, be on the conservative side, since they produce nearly the maxi-
mum possible reduction in Reynolds number and Mach number over the en-
tire laminar boundary layer.

Inviscid Mach NuniberProfiles for Blunted Cones and Wedges z
co
m

Although the maximum effect of blunting on boundary-layer develop-
ment and transition depends on the portion of the shock-produced shear
layer near the surface, the entire shear profile is of interest if the
outer edge of the boundsry layer moves out of the low Reynolds number
layer defined in the preceding section. Ih order to determine the na-
ture of the entire shock-produced shesr profile, the shape and location
of the shock must be prescribed. For moderate supersonic speeds, the
hyperbolic form assumed in reference 7 is adequate; but as the flight
speed approaches the hypersonic range, the portion of the shock beyond
the sonic point is increasingly influencedby body shape. This situa-
tion arises partly because the region between the shock and the body
becomes small= as ~ increases; consequently, characteristicsfrom

portions of the body far downstream of the sonic point reach the shock
before it has decayed to its asymptotic strength. .tiaddition, the
overexpansion near the shoulder of slender blunted bodies, which takes
place at lower speeds, &yadually becoqes an underexpansion at hypersonic
speeds, that is, a Prandtl-Meyer expansion from the sonic point fails
to reduce the pressure to, or below, the asymptotic static pressure. A
rather long process of reflection of expansion waves between the shock
and the body must, therefore, take place befare the asymptotic pressure
is reached on blunted cones or wedges.

This consideration also affects the distance required to obtain
the inviscid surface Mach numbers and Reynolds numbers calculated in
the precedtig sections. A more accurate evaluation of the effect of
blunting would include the variation of outer-edge Mach number and
Reynolds number along the entire body due to the pressure ~adient.
Perhaps mean values of these nuniberscould be used to predict the loca-
tion of transition. These mean values would be lower than those shown
in figures 1 and 2, which meems that the predicted transition point
would be even farther downstream than if the pressure gradient is neg-
lected. The fact that the self-induced pressure gradient is entirely J

favorable also tends to increase the stability of the laminar layer.
The effect on transition of increasing flight Mach numb= thus appears
to be a favorable one. For computing the shock-produced shear profile,
howev=, the narrowing regi,onbetween shock and body as flight speed
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increases introduces difficulties, in that no general shock shape is
available beyond the sonic point, and the asymptotic profile may be so
far downstream as to have no practical significance. It tis neverthe-
less felt to be worthwhile to compute these asymptotic profiles for very
high ~ with the hyperbolic shock form of reference 7, if only for
comparison with more accurate future computationsbased on experimented
shock forms or exact characteristic solutions for particular bodies.
The variation with Mach number of the hyperbolic shock of reference 7
is similar to that which would be expected, in that it decays much more
slowly for hypersonic speeds than for moderate supersonic speeds.

The computation method is presented in appendix C, and the result-
ing asymptotic inviscid shear profiles are shown in figure 4 for flight
Mach numbers from 2 to 20. Indicated on each profile is the thickness
of the low Mach number layer as defined in the precedimg section. It
is seen that this definition does, in fact, restrict the Mach nuniberto
values close to the surface value.

The profiles for blunted wedges differ qualitativelyfrom those of
blunted cones at all Mach numbers. For the blunted wedges, the Mach
number fgadient is zero at the surface; where=, for blunted cones the
gradient has a positive value. Since these gradients depend on the form
of the shock near its vertex, they should be correct for all Mach num-
bers within the limitations of the other assumptions of the analysis
(static pressure equal to values for the unblunted body, constant spe-
cific heat, inviscid flow, etc.). The portions of the profiles above
the boundary of the lowMach number layer should be good approximations
for ~ less than 5.0, but seen to become much too thick at higher Mach
numbers, particulszly for the flat plate (~ = O) and for the blunt-
nosed cylinder (Oc = O). This thickness is =sociated with the very
slow decay rate of the assumed hyperbolic shcck at these Mach numbers.
Since the shock lies quite close to the body at hypersonic speeds, these
profiles would, as previously surmised, be applicable, if at all, only
at very large distances from the vertex, where the shear layer is thin
compared with the distance from the surface to the shock wave. At such
distances, of course, the boundary layer, which is of the same order of
thickness as the layer between the shock and the body at hypersonic
speeds, would already have engulfed the entire shock-prduced shear
layer.

For higher cone and wedge angles, the
the asymptotic strength, and the resulting
in harmony with expectations.

Although the computed profiles beyond

shock decays more rapidly to
profiles appear to be more

the boundary of the low
Reynolds number layer are not reliable at high Mach numbers, they agree
well with measured profiles at Mach 3.1 (ref. 3). If more accurate
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shock-producedprofiles are desired for
must be calculated for each body shape.

higher speeds, the
Such computations

ful for estimating the variation of ‘transitionlo=ation as

MACA TN 3653

,

shock form
would be use-
the blunted

area is gradually-increased,but are not required for esttiting the
maximum downstream movement, or the blunted area required to produce
this movement.

Changes in Laminar Recovery Temperature, Heat-Transfer Rate,

and Friction Coefficimt

The downstream movement of transition due to blunting means that
larger portions of the aircraft surfaces will be subjected to laminsr,
rather than turbulent, heat-transfer rates and friction coefficients.
The blunting should, therefore, produce substantial reductions in over-
all heat-transfer rate and friction drag. There is, however, an in-
crease in laminar equilibrium recwery temperature corresponding to the
reduction in Mach number, and a change in laminar heat-transfer rate and
friction coefficient due to the reduction in Reynolds number. These
must be evaluated in order to est~te the magnitude of the advantages
due to blunting.

The heat-trsmsfer coefficient and friction-drag equations of refer-
ence 11 are used for this estimate. Although these equations are based
on the assumptions of constant specific heat and Prandtl number, and no
dissociation, they agree in order of magnitude with more exact numerical
computations even at hypersonic speeds (ref. 12).

The ratio of laminsr heat-transfer rate with smd without blunting
can be written .

where D and r are defined by equations (4) and (5), te,n ~d te,l

are equilibrium recovery temperatures with and without blunting, and

om
a)
m

)W&( ),F,Mm is the shear function of reference 11 evaluated at the sur-
m

face. This function is given in reference IJ-for several outer-edge
Mach nunibers & and sever&1 ratios of surface temperature to outer-

edge temperature t#te.

— —-
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The temperature-difference

13

ratio in equation (14) can be written

t e,n - -tW

‘e,l - %=

1 +0.2$

( )

tw
1 -tO.169~

1“+ O.d
-%

(15)

where the laminar recovery factor is assumed to be 0.845 and T is 1.4.

The ratio of equilibrium surface temperatures with and without
blunting is obtained fhm the definition of recovery factor:

t e,n-%=tejl-tl=ow5
To - tn To-tl “

whence

0.155
+,0.845

te,n 1-1-O.g

~“ 0.155 + 0.845
1 + O.aq

(16)

(17)

The laminar-skin-frictionratio is, f%om the equations of reference
11,

() ~hn
*o,;j% ‘—

‘%Jn . (Mn/M~)3/2 g Ml hl

D~

()

t~ ‘7
(18)

‘wjl g* G~>M1

The ratios of’laminar recovery temperature, skin friction, and heat
transfer for flat plates are shown in figure 5. Although there is a
slight increase in laminar equilibrium temperature for the %lunted flat
plate (this was observed expertientally in ref. 3), the laminar skin
friction is reduced over the entire range of flight Mach numbers, and
the heat-transfer rate is reduced except for wall temperature near
equilibrium. (The rapid increase in the heat-transfer ratio near re-
covery temperature arises from the small increase in recovery temperature
due to blunting. The heat transfer without blunting approaches zero

—— —-——-- . — — .. —— . .- —.— * .: —— —.. ———,.
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for these values, whereas the heat transfer with blunting becomes small
but is not yet zero.) Figure 5 shows that blunting the leading edge of
a flat plate or cylinder can produce, in addition to the longer laminar
run, a small but
transfer rate of

Si@ific~t reduction in the skin friction and heat-
the laminsr boundary layer itself.

Cooling Requirements for Stability

The static temperature at the edge of the boundary layer is con-
siderably higher for a blunted cone or wedge than for sharp bodies.
The ratio ~/tl” is, in fact, given by l/D (eq. (4)]. This increase
in outer-edge temperature means that, for a given surface temperature
tw, the ratio tw/t= is smaller than ~/tl. The outer-edge Mach num-
ber is also reduced. Shown in figure 6 are the outer-edge conditions
for a blunted and unblunted flat plate, and for a blunted and unblunted
10° half-angle cone for a surface-to-ambienttemperature ratio of 4.0.
These conditions are compared with two of the lminar stability limits
given in references 12 and 13. This comparison shows that blunting
mwes the outer-edge conditions far into the stable region in the hyper-
sonic speed range. (Although the stability-rangecurves shown are based
on two-dimensional disturbance thecry, recent computationsby Dunn and
Lin (ref. 13) indicate that three-dimensional disturbance theory also
yields I.aminarstability to extremely high Reynolds number but that some-
what lower surface temperatures are required.)

Effect of Blunttig on Heat-Transfer Rate Near the Nose

In order to esthate more accurately the net decrease in heat-
transfer rate due to blunttig, it is necessary to determine huw the
heat-transfer rate near the nose of the blunted cone differs from that
on the pointed cone. An estimate of this difference can be made by
comparing the heat-trsmsfer rate for the sharp
for the inscribed spherical nose (sketch 3).

conical nose with that

Sketch 3

———



0!
01
m
o

NACA TN 3653

This heat-transfer ratio can be written as

..— _ —.

15

where
nose,

the subscripts
respectively.

%—=
%

Sp and
.Thearea

~% (% - tw)
, AC lTe;l - %)

c refer to the spherical and conical
ratio of equation (19) is

&=2t’n@c
Ac Cos e (1 - sin ec)c

and the temperature-differenceratio is

r-l
‘r2 -$.2 %)

(19)

(20)

(21)

The mean heat-transfer coefficient for the
be the stagnation-pointvalue presented in

spherical nose is assumed to
reference 14:

(22)

4Uo Po
where c = ~ ~ Cp,st and (Nu/&)sP is about 0.61 for a

Prandtl number ~f 0.72 and for a ratio of wall temperature to stagnation
temperature (~/To) close to zero (correspondtigto cooled s~faces at

very high Moj.2 The stagnation pressure coefficient

Y = 1.4. The mean cone heat-transfer coefficient is,

cp,st is 1.84 for

from reference (14),

(23)

Cohen have found2
Since the publication of ref. 14, Reshotko and

that the expression for c given therein for supersonic flow is in
error. The correct expression for this constant is that given above.

—-- ~ —.. — —.- — .-. — —— .-. .— -.— ,___ . .—
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where (I?u/-.
therefore becom&

where P~t

number ~.

(20), (21),
half-angles
temperature

is 0.51. The ratio of heat-transfer

NACA TN 3653

coefficients,

&+(@cotocm(24,

stagnation pressure behind a normal shock at Mach

The heat transfer ratio obtained by substituting eqyations

and (24) into equation (19) is plotted in figure 7 for cone
of 10°@d 20° and for a surface-to-ambient static-
ratio of 1.0. The over-all heat transfer for the inscribed

spherical nose is seen to.be less than half as great as that for the
conical nose. The blunted nose, therefore, has the advantage of a lower
heat-transfer rate near the vertex as well as along the downstream
surfaces.

DISCUSSION

The preceding sections have shown that the Reynolds nuniberper unit
length at the outer edge of the boundary layer is lower for blunted fuse-
lages and wings than for unblunted ones. The limited data avaflable
agree with the conclusion that the transition location can be increased
by a factor of the order of-the ratio of the surface Reynolds number
without blunting to the surface Reynolds number with blunting. This
factor increases rapidly with increased flight speed, particularly for
moderately slender wings and bodies.

As.an example of the magnitude of this effect, a 100 half-angle
cone at a Mach number of 15 will be consid=ed. If the transition point
is located 1 foot downstream of the vertex without blunting, it might,
on the basis of figure 2, be moved 25 feet downstream of the vertex if
the tip is blunted.

The bluntness required is, tiom equations

%

()c~~
is of the order of 10-6,

only about Sinches. The ratio of
area of the cone at the transition
0.01. If the transition point (25

(n) and (13),

then the requtied value for y= is

the blunted area to the cross-sectional
point is, therefore, approximately
f%) is near the end of the body, the

—.
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over-all heat-transfer rate would be reduced by blunting from the value
corresponding to almost completely turbulent flow to the value corre-
sponding to completely laminar flow. The blunted cone would, therefore,
heat up much more slowly than the pointed cone and would require nmch
less coolant to maintain a given surface temperature. The ratio l+r/yn

is about 300; therefore, the effect of dissipation of the shock-prciluced
shear layer can probably be neglected (see appendix B).

Furthermore, during the heating process the ratio of surface tczn-
peratme to outer-edge temperature remains much 10W= for the blunted
cone or wedge (fig. 6) so that the advantages of cooled surfaces with
regard to lsminar stability prevail longer than for,the pointed cone or
sharp-edged wedges. Both the low surface Reynolds number and-the higher
outer-edge temperatures work tom-d preservation of laminsr Y1OW for a
much larger distance along the.surfaces of blunted bodies and wings.

These advantages with regsrd to increased laminar run and increased
laminar stability appekr to involve n-oserious disadvantages. The fric-
tion drag is reduced, and the total drag should not increase apweciably
for the small required values of the bluntness ratio. Reference 16 shows
that, for spherical-tippedcones of fixed total length, the total drag
to Mach number 7.0 is very near the value obtained for the sharp-tipped
cone for ratios of nose diamet- to maximum body diameter less than 0.25.

The quantitative effects of blunting on transition location pre-
viously computed we based on the hypothesis that the transition Reyn-
olds number is substantially unchanged when a body with a sharp tip is
blunted. Although this hypothesis produces good agreement with the
experimental results of reference 3, the possibility should certainly
be kept in mind that, at higher Mach numbers or with other body shapes,
the transition Reynolds number maybe altered by such factors as pres-
sure gradient and outer-edge Mach number and Reynolds number. Further-
more, as the length of laminar run increases, the possibility of pre-
mature transition due to surface roughness or stresm turbulence also
increases, and the dissipation of the shock-produced shear profile be-
comes important. Whether any of these ”factorswill seriously reduce the
attainable downstream movement of transition due to blunting remains to
be determined expertientally.

Many theoretical problems also require solution before the quanti-
tative effects of blunting on transition can be predicted with confid-
ence. One basic problem, of course, is that of the development of a
laminar boundary layer in a nonunifomn external stream. Solution of
this problem would establish the magnitude of external shear that is
negligible and, consequently, the conditions for which the boundary
layer can be assumed to develop in a layer of reduced Reynolds num-mr
corresponding to the mean value near the surface. ~S solution might

..—-— -. .-. .-— —.. . ... ——- ------ ----- ------ ---. —--.— -—— .—— —— —
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reveal whether, as indicated by the results of reference 3, it is suf-
ficient, in genmal, to obtain the naximum reduction in Reynolds number
only for the inner half or two-thirds of the boundary layer rather than
at the outer edge. The latter question, however, involves predicting
the location of transition for various velocity profiles, which cannot
as yet be done even for laminsr layers in a uniform external stream.
Since the required blunting is small, however, this question appears to
be of secondsry importance.

CONC!LUDINGREMM3KS

It is clear from the preceding discussion that many questions re-
main unanswered in this report. The principal observation that the
Reynolds number and Mach number near the surface are reduced by blunt-
ing, and also the approximate magnitude of the reductions are fairly
well established. The assumption that the boundary-layer development ..

should be determined primsrily by the reduced Reynolds number and Mach
nimber near the surface rather than by the flow outside the inviscid
shear layer also seems reasonable. The principal benefits from blunt-
ing, however, lie in the hypersonic speed range, where many of the quan-
titative results calculated hereti are subject to corrections whose ~g-
nitude is as yet unknown. Qualitative estimates indicate that some of
these corrections, such as the displacement effect or the pressure gra-
dients, either inviscid or self-induced by the boundsry layer, should
have a favorable effect on the downstream movement of transition. Other
effects, such as surface roughness, stream turbulence, or changes in
transition Reynolds number, may tend to limit the downstream movement
of transition to values less than those predicted. Dissociation at
very high Mach numbers may have a significant effect on outer-edge con-
ditions and, consequently, on the maximum transition mov&nent to be ex-
pected. As usual, when so many unknown factors contribute to a phenom-
enon, experiment must be relied upon to determine which factors are
dominant and which are of minor importance.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, November 21, 1955

— — .— —.—. . ——
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SYMBOLS

The following symbols are used in this report:

A area

(A*/A)M isentropic area contraction ratio from Mach nuder M to
Mach number 1.0

a speed of sound

B ‘0 (A*/A)%
~

c constant in linesr viscosity-temperaturerelation

Cp,St stagnation pressure coefficient

c

1 +0.d t.

1+0.21f ‘n”

()%7”f3*o,+--+

b

k

L

M

Nu

P

P

shear function at surface (ref. 11)

heat-transfer coefficient

thermal conductivity of air

length of conical tip

Mach number

Nukselt number

stagnation pressure

static pressure

—. - ——— -- --—- -—-- — — . .._—_.—— — —— —--————— -—.—
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.

~

Re

r

rl

s

T

t

%

u

uSp

x

Y

r

heat-transfer rate

Reynolds number

recovery factor or radius

cone radius at statioriwhere profiles are determined

Sutherland’s constant for air, 198.6° R “ n

stagnation“temperature

static temperature

surface temperature

veloclty

velocity downstreaiuof
nose

distance along surface

normal shock ahead of spherical

coordinate normal to surface

ratio of specific heats, 1.40

boundary-layer thickness

boundary-layer displacement thickness

inclination of sonic line (ref. 7)

semivertex angle of cone

semivertex angle of wedge

coefficient of viscosity

v

—
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P

‘c

v’

Subscripts:

c

c

e

n

s

SB

Sp

St

tr

W

w

o

1

w

density

shear force at surface

shock angle

centroid

cone

equilibrium

inviscid surface values

sonic point on detached

sonic point on body

sphere

stagnation

transition point

wedge

surface values

ambient conditions

inviscid surface values

for blunted cones or wedges ‘

shock wave

for unblunted cones or wedges

value at outer edge of boundary layer

Superscript:

1 local conditions in inviscid shear layer

..-. —.. ..- .. .. ..——. ... .. . .— —-— -.— — —.— .— ——
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APPENDIX B

DISSII?ATIONOF THE LOW MACH NUMBER LAYER

.

.

h order to estimate more closely the amount of blunting required
to maintain a given thickness of the low Mach numb= layer, the rate of
dissipation of the shock-produced profile must he considered. The sim-
plest method for estimating the rate is to consider the profile produced
by the detached shockwave as a step function (sketch 4):

——

Sketch 4

in which the outer velocity is that corresponding to the unblunted body
and the inner velocity is that produced near the surface by blunting the
vertex. The profile dissipation can then be considwed identical to
that at the interface of two psrallel lsminsr jets emerging at the same
static pressure. The equation for the velocity profile in the inter-
action region is given in reference 17 for the case when u~ and Un

differ by a small amount. The appropriate equation is:

where yn is the initial thickness of the low Mach number layer, R%fn

is Reynolds numb= based on yn and outer-flow conditions, and @(a)

is the error function of a. Profiles calculated from equation (Bl) for

—— —. .—
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Reyn = 104 and

Apparentl , the

7until x yn is

23

I
for several values of x/yn are shown in figure 8.

velocity near the surface does not change appreciably
of the order of 1000. Although these profiles are

valid only for small differences between u~ and Un, the order of

magnitude of the dissipation remains the same for large differences
(see fig. 4.11, ref. 17). The value of x/yn< 1000 is, therefcme,

probably a good estimate for the length of run in which dissipation “
of the shock-produced shear profile can be neglected if this PrOffle,
remains laminar.

If transition to turbulence takes place in this layer, the length
of run for which dissipation can be neglected is appreciably reduced.
No experimental results are available to estimate under.what conditions
the shock-produced shear profile is likely to undergo transition. How-
ever, an indication of whether transition is a possibility b this
layer can be obtained from the stability criterion for parallel jets
developed in reference 18. This criterion states that the interface

can become unstable-if the quantity
)+(P % vanishes in the interface

profile. However, the profile is stable if this quantity vanishes only
at points in the profile where the velocity satisfies one or both of
the following inequalities:

U<U1-al

u>un+~

These conditions
reach a layer in

In terms of
as follows:

assure that disturbances from either stream will not
which amplification is possible.

Mach number profiles, these conditions can be stated

The profile is stible to two-dimensional disturbances if the quantity

%(q*] -
vanishes only at points where

Ml-l
M<

{(r - l)(M1 + 2~
.

(B2)

..____ ._____ —-.—- ————— — —.-— — ___ ..—.- ..————
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or where

The latter condition

the stability of the

~+1
M>

(r - 1)(2-%)

NACA TN 3653

(B3)

cannot be satisfied for ~ > 2.0. Consequently,

profile depends chiefly on whether $ki%il
J

vanishes only where condition (B2) is fulfilled. Some sampl~compu~a-
tions based on the profiles of figure 4 indicate that condition (B2) is
generally satisfied for the blunted-cone profile but not for the blunted-
wedge profiles. The latter profiles therefore are more inclined to
undergo transition than the former. If transition occurs, the amount of
bluntness required to produce a prescribed thickness of the low Mach num-
ber layer at a given station may be considerably greater than calculated
on the basis of laminar flow. This discussion must necessarily be incon- -
elusive, since the location or even the existence of transition cannot be
established from stability theory alone.

o
co
8.

——— -
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.

MACH NUMBER PROFIIXS PRODUCED BY DETACHED SHOCK WAVES

The Mach number profiles normal to the surfaces of cones and wedges
with slightly blunted tips or leading edges can be calculated from the
one-dimensional continuity equation if (1) the form and location of the
detached shock wave is known, (2) the static pressure is constant normal
to the surface, and (3) diffusion and dissipation of the profile are
neglected. Condition (1) is most conveniently satisfied by using the
detached-shock-wavetheory of reference 7. Condition (2) is satisfied
at stations sufficiently fsr downstream of the nose or leading edge,
where the surface static pressure has reached, or closely approached,
the value obtained with unblunted cones or wedges. At nmderate super-
sonic Mach numbers, the required distance is of the order of 3 to 10
times the thickness of the blunted portion of the nose or leading edge.
This condition is not quite satisfied for blunted cones,”becausethe
flow field approaches a conical distribution characterizedby a gradual
decrease of static pressure from the ‘surfaceto the shock wave. But if
the profile extends only a small portion of the distance from the sur-
face to the shock wave, this gradient can be neglected without serious
error. Condition (3) remains an assumption whose validity decreases as
the distance along the body increases. It implies that the profile re-
uins unchanged in form for an unlimited distance downstream of the ver-
tex. As pointed out in appendix B, this assumption appears to be fairly
good for distances of the order of 1000 tties the thickness of the
~lunted portion of the body if the profile remains laminar.

The profile computation is set up with the aid of sketch

/

s

A

y

As’El
Sketch 5

5, which
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applies
is used
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either for cones or wedges. If the sonic-point area of the body
for reference purpses, the continuity equation can be written as

(cl)

or
A/~

- J

PO (A*/A)M

%= ()

OdA
F~ ~ (C2)

o

where the primes refer to local conditions in the inviscid shear layer.
Since the stagnation pressure along each streamline remains constant
downstream of the shock, P’/P0 is the stagnation-pressureratio across
the shock at the point where the streamline bounding the area A enters
the shock. If
pressure ratio

the shock angle at this point is (p,then the total-
can be written (ref. 19)

(C3)

The Mach number M’ at the area A’ can also be expressed in terms of
shock angle by the relation

1 +0.2M’2 =(%)U’RY’7(C4)

The+function (A*/A)Ml, as well as P’/PO, is a function of the shock
●’ angle q at the yoint where the streamline crosses the shock wave. The

differential d(A/~) of equation (C2) must be converted into a func-

tion of Q in order that the integration may be csrried out from
P = 90° to q= ~, where ~ is the shock angle corresponding to the
unblunted cone or wedge. The Mach numb= M! as a function of A’ can
then be obtained from equations (C4) and (C3). .

—.— . -
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From reference 7 (eq. (5)),the relation between shock angle and
shock ordinate for the assumed hyperbolic wave is

()
2

_Y_ (xO/Ys13)2

ySB ’22p (p tar)% - 1)

where

(C5)

(C6)

and PS is the shock angle at the shock sonic point. The ratio Ys/Y~

iS a function of ~ and depends on whether the flow is two-dimensional

or axially symmetric.

The area differential of equation (C2) can now be expressed as
follows:

For two-dimensional flow:

For axially symmetric flow: .

(C7)

(C8)

Combination of equations (C2) to (C8) yields the following final
expressions for determining the variation of M’ with A’:

For plane flow:

( tan ~ see’ ‘)(&-t8n%J- 1)3/’ m (C9)

-—- — ..— — ————-
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For axially-symnetricflow:

In these equations, y’ is the linear distance normal to the wedge or
For y’ << q, the area ratio A’/A= in equation (10) is equalcone.

2r1y t
to ~.

YSB

eral.
Mach

Equations (C9) and (C1O) have been integrated numerically for sev-
M&h numbers and for several wedge and
number profiles are shown in figure 4.
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(a)FlightMach nurber,2.03 wedges.

Mach nuuiber,M

(b)

Figure 4. - Inviseid

Flight Mach number, 2.0;

Mach number profiles for

cones.

blunted cones and wsdges.
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(e) Flight Mach nuniber,5.0; Wedges.

o 1- 2 3t 4 5
Mach nunber, M

(f) Flight Mach nuniber,5.OJ cones.

Figure 4. - Continued. Inviscid Mach nuniberprofiles for blunted cones and
wedges.
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(i) Flight Mach nuuiber,10.0; wedges.
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(k) Flight Mach mmiber, 15.03 wedges.
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(1) Flight Mach number, 15.0; cones.

Figure 4. - Continued. Inviscid Mach nwiber profiles for blunted cones
and wedges.
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